首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stem biomechanics of the giant moss Dendroligotrichum dendroides s.l. and its significance for growth form diversity in mosses
Abstract:Abstract

The giant moss Dendroligotrichum dendroides s.l. grows as self-supporting plants up to 40 cm in height in forest habitats in Chile and New Zealand. This moss represents one of the tallest self-supporting bryophytes. Biomechanical tests indicate that the stems can develop a high degree of stiffness (Young’s modulus) via a dense hypodermal sterome that is comparable with that of woody stems of vascular plants. A comparison with mechanical properties of other terrestrial and aquatic mosses indicates that different moss growth and life forms can produce very different mechanical architectures. Values of stem stiffness can vary between different growth forms of mosses to a comparable extent to that observed among diverse growth forms of vascular plants. Plants varying profoundly in overall size, development, and phylogenetic position nevertheless appear to develop comparable mechanical adaptations and growth forms in response to certain environmental conditions.
Keywords:Biomechanical properties  Dendroid growth form  Mechanical architecture  Self-supporting moss  Young’s modulus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号