首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Solution formation of Holliday junctions in inverted-repeat DNA sequences
Authors:Hays Franklin A  Schirf Virgil  Ho P Shing  Demeler Borries
Institution:Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331-7305, USA.
Abstract:The structure of Holliday junctions has now been well characterized at the atomic level through single-crystal X-ray diffraction in symmetric (inverted-repeat) DNA sequences. At issue, however, is whether the formation of these four-stranded complexes in solution is truly sequence dependent in the manner proposed or is an artifact of the crystallization process and, therefore, has no relevance to the behavior of this central intermediate in homologous recombination and recombination-dependent cellular processes. Here, we apply analytical ultracentrifugation to demonstrate that the sequence d(CCGGTACCGG), which crystallizes in the stacked-X form of the junction, assembles into four-stranded junctions in solution in a manner that is dependent on the DNA and cation concentrations, with an equilibrium established between the junction and duplex forms at 100-200 microM DNA duplex. In contrast, the sequence d(CCGCTAGCGG), which has been crystallized as B-DNA, is seen to adopt only the double-helical form at all DNA and salt concentrations that were tested. Thus, the ACC trinucleotide core is now shown to be important for the formation of Holliday junctions in both crystals and in solution and can be estimated to contribute approximately -4 kcal/mol to stabilizing this recombination intermediate in inverted-repeat sequences.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号