首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.)
Authors:Cassanelli Stefano  Reyes Maritza  Rault Magali  Carlo Manicardi Gian  Sauphanor Benoît
Institution:Department of Agricultural Science, University of Modena and Reggio Emilia, Reggio Emilia, Via JFK Kennedy 17/19, RE 42100, Italy. stcass@unimore.it
Abstract:Two strains of Cydia pomonella (L.) (Lepidoptera: Tortricidae) were selected in the lab by exposure to increasing concentrations of diflubenzuron (Rdfb strain) or azinphos-methyl (Raz strain). Insecticide bioassays showed that the adults of the Rdfb strain exhibited a 2.6-fold and a 7.7-fold resistance ratio to azinphos-methyl and carbaryl, respectively compared to a susceptible strain (S) whereas the adults of the Raz strain exhibited a 6.7-fold resistance ratio to azinphos-methyl and a 130-fold resistance ratio to carbaryl. In the Raz strain, a target site resistance mechanism was suggested by the inhibition of acetylcholinesterase (AChE) activity. In fact the ki values did not discriminate the S and Rdfb strains, while the Raz strain exhibited a 1.7-fold and a 14-fold increase in ki value compared to the S strain for azinphos-methyl oxon and carbaryl, respectively. To verify this hypothesis, two cloned AChE cDNAs sequences (named cydpom-ace2 e cydpom-ace1) were compared between the susceptible and the resistant strains. No difference in the deduced amino acid sequence was found in cydpom-ace2 (orthologous to the Drosophila melanogaster AChE). In the putative cydpom-ace1 (paralogous to the Drosophila AChE), a single amino acid substitution F399V was exclusively present in the Raz strain. The F399 lined the active site of the enzyme and the F399V substitution likely could influence the accessibility of different types of inhibitors to the catalytic site of the insensitive cydpom-ace1.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号