首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oleosin KD 18 on the surface of oil bodies in maize. Genomic and cDNA sequences and the deduced protein structure
Authors:R D Qu  A H Huang
Institution:Department of Botany and Plant Sciences, University of California, Riverside 92521.
Abstract:Oleosins are newly discovered, abundant, and small Mr hydrophobic proteins localized on the surface of oil bodies in diverse seeds. So far, most of the studies have been on the general characteristics of the proteins, and only one protein (maize KD 16) has been studied using a cDNA clone containing an incomplete coding sequence. Here, we report the sequences of a genomic clone and a cDNA clone of a new maize oleosin (KD 18). There is no intron in the gene. The 5'-flanking region contains potential regulatory elements including RY repeats, CACA consensus, and CATC boxes, which are presumably involved in the specific expression of the proteins in maturing seeds. The deduced amino acid sequence was analyzed for secondary structures. We suggest that KD 18 of 187-amino acid residues contains three major structural domains: a largely hydrophilic domain at the N terminus, a hydrophobic hairpin alpha-helical domain at the center, and an amphipathic alpha-helix domain at the C terminus. These structural domains are very similar to those of oleosin KD 16. However, the KD 18 and KD 16 amino acid sequences as well as nucleotide sequences are highly similar only at the central domain (72 and 71%, respectively). The similarities are highest at the loop region of the alpha-helical hairpin. These results suggest that KD 18 and KD 16 are isoforms, encoded by genes derived from a common ancestor gene. We propose that the hairpin domain acts as an indispensible internal signal for intracellular trafficking of oleosins during protein synthesis as well as an anchor for oleosins on the oil bodies. The other two domains can undergo relatively massive amino acid substitutions without impairing the structure/function of the oleosins or have evolved to generate oleosins having different functions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号