首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inbreeding depression influences genet size distribution in a marine angiosperm
Authors:Hämmerli A  Reusch T B H
Institution:Max Planck Institute for Limnology, August-Thienemann-Str. 2, D-24306 Pl?n, Germany. haemmerli@mpil-ploen.mpg.de
Abstract:Although inbreeding depression is a major genetic phenomena influencing individual fitness, it is difficult to measure in wild populations. An alternative approach is to correlate heterozygosity, measured using highly polymorphic markers, with a fitness-correlated trait. In clonal plants, genet size is predicted to be fitness correlated. Here we test the prediction that the genet size distribution of the marine clonal plant Zostera marina (eelgrass) is influenced by inbreeding depression. We used nine polymorphic microsatellite markers to access the fine scale clonal structure and to measure individual heterozygosity within 4 plots (each corresponds to 256 m2, sampled at 1-m intervals) in two populations along the German Baltic Coast. The same plots were also sampled for flowering and vegetative shoots to obtain estimates for sexual reproductive output at the level of the genetic individual. We found substantial differences in the genet size distribution between the two populations that may be explained by different disturbance frequency. In both populations, clone size was significantly positively correlated with the total number of flowering shoots, indicating that larger clones have a higher reproductive output. Individual heterozygosity was significantly positively associated with clone size. The effect was much stronger in Falkenstein (low disturbance) than in Maasholm (high disturbance). The results indicate that in a low disturbance population the relatively outbred clones occupy a higher proportion of the available space, possibly because they outcompete relatively inbred neighbours.
Keywords:clonal plant  inbreeding depression  individual heterozygosity  microsatellites                Zostera marina
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号