首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physical properties of glycosyl diacylglycerols. 1. Calorimetric studies of a homologous series of 1,2-di-O-acyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerols
Authors:D A Mannock  R N Lewis  R N McElhaney
Institution:Department of Biochemistry, University of Alberta, Edmonton, Canada.
Abstract:The polymorphic phase behavior of aqueous dispersions of a homologous series of 1,2-di-O-acyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerols was studied by differential scanning calorimetry. At fast heating rates unannealed samples of these lipids exhibit a strongly energetic transition, which has been identified as a lamellar gel/liquid crystalline (L beta/L alpha) phase transition (short- and medium-chain compounds) or a lamellar gel to inverted hexagonal (L beta/HII) phase transition (long-chain compounds) by X-ray diffraction studies (Sen et al., 1990). At still higher temperatures, some of the lipids that form lamellar liquid-crystalline phases exhibit an additional transition, which has been identified as a transition to an inverted nonbilayer phase by X-ray diffraction studies. The lamellar gel phase formed on initial cooling of these lipids is a metastable structure, which, when annealed under appropriate conditions, transforms to a more stable lamellar gel phase, which has been identified as a poorly hydrated crystal-like phase with tilted acyl chains by X-ray diffraction measurements (Sen et al., 1990). With the exception of the di-19:0 homologue, the crystalline phases of these lipids are stable to temperatures higher than those at which their L beta phases melt and, as a result, they convert directly to L alpha or HII phases on heating. Our results indicate that the length of the acyl chain affects both the kinetic and thermodynamic properties of the crystalline phases of these lipids as well as the type of nonbilayer phase that they form. Moreover, when compared with the beta-anomers, these alpha-D-glucosyl diacylglycerols are more prone to form ordered crystalline gel phases at low temperatures and are somewhat less prone to form nonbilayer phases at elevated temperatures. Thus the physical properties of glucolipids (and possibly all glycolipids) are very sensitive to the nature of the anomeric linkage between the sugar headgroup and the glycerol backbone of the lipid molecule. We suggest that this is, in part, due to a change in orientation of the glucopyranosyl ring relative to the bilayer surface, which in turn affects the way(s) in which the sugar headgroups interact with each other and with water.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号