Abstract: | Abstract. Fine-scale structure of a species-rich grassland was examined for seasonal changes caused by manipulated changes in the availability of above and below-ground resources (additional illumination with the help of mirrors and fertilization) in a field experiment. If changes induced by fertilization — which are expected to lead to a reduction in small-scale diversity —are due to intensified light competition, they should be compensated for by additional light input. Permanent plots of 40 cm × 40 cm were sampled by the point quadrat method at three angles (60°, 90° and 120° from the horizontal North-South direction), using a laser beam to position the quadrats, in early July and early September. The applied treatments did not cause apparent changes in plant leaf orientation. The degree of spatial aggregation of biomass increased seasonally in fertilized, non-illuminated plots: greater productivity at a constant light supply led to a faster growth rate of potentially dominant species, as compared to the subordinate ones. Additional illumination mitigated this effect of fertilization, indicating that the observed changes in biomass aggregation were due to increased light competition. There was a considerable seasonal decrease of variance ratio (ratio of observed variance of richness at a point and variance expected at random) in fertilized only and in illuminated only plots. In fertilized plots this was due to the positive relationship between biomass aggregation and expected variance of richness. Biomass constancy occurs to be inversely related to deficit in variance of richness. In illuminated plots, in contrast, only the observed variance of richness decreased seasonally, indicating a more uniform use of space by different species. Evidently, a deficit in variance of richness can be caused by drastically different processes, showing that the variance ratio statistic may not have a significant explanatory value in fine-scale community studies. |