首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Substrate-dependent shift of optimum pH in porcine pancreatic alpha-amylase-catalyzed reactions
Authors:K Ishikawa  I Matsui  K Honda  H Nakatani
Institution:National Chemical Laboratory for Industry, Ibaraki, Japan.
Abstract:Porcine pancreatic alpha-amylase (EC 3.2.1.1, abbreviated as PPA) hydrolyzes alpha-D-(1,4) glucosidic bonds in starch and amylose at random, and the optimum pH for the substrates is 6.9. The optimum pH, however, shifted to 5.2 for the hydrolytic reaction of low molecular weight oligosaccharide substrates such as p-nitrophenyl alpha-D-maltoside, gamma-cyclodextrin, maltotetaitol, and maltopentaitol. The optimum pH for the oligosaccharides consisting of more than five glucose residues, such as maltopentaose and maltohexaitol, was 6.9. From the analysis of the hydrolysates, it was clear that the shift of the optimum pH occurred only when the fifth subsite of PPA in the productive binding modes was occupied by a glucosyl residue of the substrates. The value of Km was independent of pH between 4 and 10 but that of kcat was dependent on pH. The pH profiles of kcat for the above substrates did not fit a simple bell-shaped curve predicted by a two-catalytic-group mechanism. Instead, they were well analyzed theoretically by three pK values and two intrinsic kcat values. Enthalpy changes for the three pK's (4.90, 5.35, and 8.55 at 30 degrees C) were determined from the temperature dependence of pH profiles for maltopentaitol and maltohexaitol to be 0.0, 2.87, and 7.33 kcal/mol, respectively. These results indicate that productive binding modes of the substrates directly affect the catalytic function of the enzyme. From the present thermodynamic analysis and reported three dimensional structure at the active site of PPA Buisson, G. (1987) EMBO J. 6, 3909-3916], one can assume that a histidyl residue (101, 201, or 299) acts as a proton donor and two carboxyl groups (Asp 197, Glu 233, or Asp 300) act as proton donors or acceptors, and the productive binding mode covering the fifth subsite changes configurations between the catalytic residues and the glucosidic bond hydrolyzed and modulates kinetic parameters depending on pH.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号