首页 | 本学科首页   官方微博 | 高级检索  
     


A murine model of Nijmegen breakage syndrome
Authors:Williams Bret R  Mirzoeva Olga K  Morgan William F  Lin Junyu  Dunnick Wesley  Petrini John H J
Affiliation:Laboratory of Genetics, University of Wisconsin Medical School, Madison, WI, USA.
Abstract:Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, immunodeficiency, and predisposition to hematopoietic malignancy. The clinical and cellular phenotypes of NBS substantially overlap those of ataxia-telangiectasia (A-T). NBS is caused by mutation of the NBS1 gene, which encodes a member of the Mre11 complex, a trimeric protein complex also containing Mre11 and Rad50. Several lines of evidence indicate that the ataxia-telangiectasia mutated (ATM) kinase and the Mre11 complex functionally interact. Both NBS and A-T cells exhibit ionizing radiation (IR) sensitivity and defects in the intra S phase checkpoint, resulting in radioresistant DNA synthesis (RDS)-the failure to suppress DNA replication origin firing after IR exposure. NBS1 is phosphorylated by ATM in response to IR, and this event is required for activation of the intra S phase checkpoint (the RDS checkpoint). We derived a murine model of NBS, the Nbs1(DeltaB/DeltaB) mouse. Nbs1(DeltaB/DeltaB) cells are phenotypically identical to those established from NBS patients. The Nbs1(DeltaB) allele was synthetically lethal with ATM deficiency. We propose that the ATM-Mre11 complex DNA damage response pathway is essential and that ATM or the Mre11 complex serves as a nexus to additional components of the pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号