首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolic activators of spinach leaf nitrate reductase: Effects on enzymatic activity and dephosphorylation by endogenous phosphatases
Authors:Steven C Huber  Joan L Huber
Institution:(1) United States Department of Agriculture, Agricultural Research Service, and Department of Crop Science, North Carolina State University, 27695-7631 Raleigh, NC, USA;(2) Horticultural Science, North Carolina State University, 27695-7631 Raleigh, NC, USA
Abstract:Nitrate reductase (NR; EC 1.6.6.1) in spinach (Spinacia oleracea L.) leaves was inactivated in the dark and reactivated by light in vivo. When extracted from dark leaves, NR activity was lower and more strongly inhibited by Mg2+ relative to the enzyme extracted from leaves harvested in the light. When dark extracts were desalted at pH 6.5 and preincubated at 25° C prior to assay, enzyme activity (assayed either in the presence or absence of Mg2+) remained essentially constant, i.e. there was no spontaneous reactivation in vitro. However, addition of certain metabolites resulted in a time- and concentration-dependent activation of NR in vitro. Effective activators included inorganic phosphate (Pi), 5prime-AMP, and certain of its derivatives such as FAD and pyridine nucleotides (both oxidized and reduced forms). All of the activators increased NR activity as assayed in the absence of Mg2+, whereas some activators (e.g. Pi, 5prime-AMP and FAD) also reduced Mg2+ inhibition. The reduction of Mg2+ inhibition was also time-dependent and was almost completely prevented by a combination of okadaic acid plus KF, suggesting the involvement of dephosphorylation catalyzed by endogenous phosphatase(s). In contrast, the activation of NR (assayed minus Mg2+) was relatively insensitive to phosphatase inhibitors, indicating a different mechanism was involved. Compounds that were not effective activators of NR included sulfate, ribose-5-phosphate, adenosine 5prime-monosulfate, coenzyme A, ADP and ATP. We postulate that NR can exist in at least two states that differ in enzymatic activity. The activators appear to interact with the NR molecule at a site distinct from the NADH active site, and induce a slow conformational change (hysteresis) that increases NR activity (assayed in the absence of Mg2+). Possibly as a result of the conformational change caused by certain activators, the regulatory phospho-seryl groups are more readily dephosphorylated by endogenous phosphatases, thereby reducing sensitivity to Mg2+ inhibition. Preliminary results suggest that light/dark transitions in vivo may alter the distribution of NR molecules between the low- and high-activity forms.Abbreviations AP5A P1, P5-di(adenosine-5prime)pentaphosphate - DTT dithiothreitol - Mops 3-(N-morpholino)propanesulfonic acid - NR NADH:nitrate reductase - NRA nitrate reductase activity Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643. This work was also supported in part by grants from the U.S. Department of Energy (Grant DE-AIO5-91 ER 20031) and USDA-NRI (Grant 93-373-5-9231). The authors thank Dr. W.M. Kaiser (Lehrstuhl Botanik I der Universität, Würzburg, Germany) for discussions and Dr. C. Lillo (Rogaland University Center, Stavanger, Norway) for sharing results prior to publication.
Keywords:Hysteresis  Metabolite regulation  Nitrate reductase  Protein phosphatase  Spinacia
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号