首页 | 本学科首页   官方微博 | 高级检索  
     


Sugar inhibits brassinosteroid signaling by enhancing BIN2 phosphorylation of BZR1
Authors:Zhenzhen Zhang  Ying Sun  Xue Jiang  Wenfei Wang  Zhi-Yong Wang
Affiliation:1. College of Life Sciences, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China;2. Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America;3. Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China;Peking University, CHINA
Abstract:Sugar, light, and hormones are major signals regulating plant growth and development, however, the interactions among these signals are not fully understood at the molecular level. Recent studies showed that sugar promotes hypocotyl elongation by activating the brassinosteroid (BR) signaling pathway after shifting Arabidopsis seedlings from light to extended darkness. Here, we show that sugar inhibits BR signaling in Arabidopsis seedlings grown under light. BR induction of hypocotyl elongation in seedlings grown under light is inhibited by increasing concentration of sucrose. The sugar inhibition of BR response is correlated with decreased effect of BR on the dephosphorylation of BZR1, the master transcription factor of the BR signaling pathway. This sugar effect is independent of the sugar sensors Hexokinase 1 (HXK1) and Target of Rapamycin (TOR), but requires the GSK3-like kinase Brassinosteroid-Insensitive 2 (BIN2), which is stabilized by sugar. Our study uncovers an inhibitory effect of sugar on BR signaling in plants grown under light, in contrast to its promotive effect in the dark. Such light-dependent sugar-BR crosstalk apparently contributes to optimal growth responses to photosynthate availability according to light-dark conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号