首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cardiolipin is essential for higher proton translocation activity of reconstituted F0
Authors:Hui Yang  Youguo Huang  Xujia Zhang  Fuyu Yang
Institution:(1) National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
Abstract:The F0 membrane domain of F0F1-ATPase complex had been purified from porcine heart mitochondria. SDS-PAGE with silver staining indicated that the purity of F0 was about 85% and the sample contained no subunits of F1-ATPase. The purified F0 was reconstituted into liposomes with different phospholipid composition, and the effect of CL (cardiolipin), PA (phosphatidic acid), PI (phosphatidylinositol) and PS (phosphatidylserine) on the H+ translocation activity of F0 was investigated. The results demonstrated that CL, PA and PI could promote the proton translocation of F0 with the order of CLPA>PI, while PS inhibited it. Meanwhile ADM (adriamycin) severely impaired the proton translocation activity of F0 vesicles containing CL, which suggested that CL’s stimulation of the activity of reconstituted F0 might correlate with its non-bilayer propensity. After F0 was incorporated into the liposomes containing PE (phosphatidylethanolamine), DOPE (dioleoylphosphatidylethanolamine) as well as DEPE (dielaidoylphosphatidylethanolamine), it was found that the proton translocation activity of F0 vesicles increased with the increasing content of PE or DOPE, which has high propensity of forming non-bilayer structure, but was independent of DEPE. The dynamic quenching of the intrinsic fluorescence of tryptophan by HB (hypocrellin B) as well as fluorescent spectrum of acrylodan labeling F0 at cysteine indicated that CL could induce F0 to a suitable conformation resulting in higher proton translocation activity.
Keywords:CL  propensity of non-bilayer structure formation  reconstituted F0            proton translocation activity  conformation
本文献已被 SpringerLink 等数据库收录!
点击此处可从《中国科学:生命科学英文版》浏览原始摘要信息
点击此处可从《中国科学:生命科学英文版》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号