首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of Sucrolysis via the Uridine Diphosphate and Pyrophosphate-Dependent Sucrose Synthase Pathway
Authors:Xu D P  Sung S J  Loboda T  Kormanik P P  Black C C
Affiliation:Department of Biochemistry of the School of Chemical Sciences, University of Georgia, Athens, Georgia 30602.
Abstract:The breakdown of sucrose to feed both hexoses into glycolytic carbon flow can occur by the sucrose synthase pathway. This uridine diphosphate (UDP) and pyrophosphate (PPi)-dependent pathway was biochemically characterized using soluble extracts from several plants. The sucrolysis process required the simultaneous presence of sucrose, UDP, and PPi with their respective Km values being about 40 millimolar, 23 micromolar, and 29 micromolar. UDP was the only active nucleotide diphosphate. Slightly alkaline pH optima were observed for sucrose breakdown either to glucose 1-phosphate or to triose phosphate. Sucrolysis incrased with increasing temperature to near 50°C and then a sharp drop occurred between 55 and 60°C. The breakdown of sucrose to triose-P was activated by fructose 2,6-P2 which had a Km value near 0.2 micromolar. The cytoplasmic phosphofructokinase and fructokinase in plants were fairly nonselective for nucleotide triphosphates (NTP) but glucokinase definitely favored ATP. A predicted stoichiometric relationship of unity for UDP and PPi was measured when one also measured competing UDPase and pyrophosphatase activity. The cycling of uridylates, UDP to UTP to UDP, was demonstrated both with phosphofructokinase and with fructokinase. Enzyme activity measurements indicated that the sucrose synthase pathway has a major role in plant sucrose sink tissues. In the cytoplasmic sucrose synthase breakdown pathway, a role for the PPi-phosphofructokinase was to produce PPi while a role for the NTP-phosphofructokinase and for the fructokinase was to produce UDP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号