首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of the binding of bilirubin to either the first class or the second class of binding sites of the human serum albumin molecule on its photochemical reaction.
Authors:S Onishi  S Itoh  K Isobe  M Ochi  T Kunikata  and T Imai
Institution:Department of Pediatrics, Kagawa Medical School, Japan.
Abstract:The kinetics of the photochemical changes of bilirubin were studied at a constant concentration of bilirubin bound either to the first class or to the second class of binding sites of the human serum albumin molecule. The more the bilirubin binds to the first class of binding sites in the human serum albumin molecule, the more readily geometric photoequilibrium to give (ZE)-bilirubin takes place. The more the bilirubin binds to the second class of binding sites or allosterically transformed binding sites induced by added SDS, the more readily structural photoisomerization, i.e. the formation of (EZ)-cyclobilirubin, takes place. When the serum bilirubin concentration is at low, safe, values bilirubin binds exclusively to the first class of binding sites and serves as an antioxidant Onishi, Yamakawa & Ogawa (1971) Perinatology 1, 373-379]; at these concentrations human serum albumin protects bilirubin from irreversible photodegradation by only allowing readily reversible geometric photoisomerization. As the serum bilirubin concentration increases to high, and potentially dangerous, values, bilirubin binds to the second class of binding sites, and under these conditions human serum albumin seems to promote the photocyclization of bilirubin. During irradiation human serum albumin seems to act by retaining low, useful, concentrations of bilirubin while facilitating irreversible photoisomerization of excess bilirubin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号