首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rapid-scan stopped-flow studies of the flavoenzyme mercuric reductase during catalytic turnover
Authors:A Sanstr?m  S Lindskog
Institution:Avdelningen f?r Biokemi, Ume? Universitet, Sweden.
Abstract:Time-resolved absorption spectra of the FAD-containing enzyme mercuric reductase were recorded during the catalytic reaction at 25 degrees C, pH 7.3. With an excess of NADPH over Hg2+ there was a rapid (k = 43 s-1) initial formation of a spectral species similar to that previously assigned to an NADPH complex of two-electron-reduced enzyme, EH2-NADPH. This spectrum persisted during the quasisteady-state phase of the reaction suggesting that EH2-NADPH is a true catalytic intermediate and that the rate of catalysis is limited by the oxidation of EH2-NADPH by Hg2+. Also with an excess of Hg2+ over NADPH a spectrum similar to that of EH2-NADPH was rapidly formed. As the NADPH was exhausted, the spectrum of oxidized enzyme, E, did not reappear but rather a spectrum similar to that previously assigned to an NADP+ complex of two-electron-reduced enzyme, EH2-NADP+. These results suggest that EH2-HADP+ cannot rapidly reduce the Hg2+ substrate. However, eventually all reducing equivalents from NADPH added to oxidized, activated enzyme are utilized for the reduction of Hg2+. A mechanism model is proposed that does not involve the free, oxidized enzyme in the catalytic cycle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号