首页 | 本学科首页   官方微博 | 高级检索  
     


Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation
Authors:Choi Sukwoo  Klingauf Jürgen  Tsien Richard W
Affiliation:Department of Neuroscience, Ewha Institute for Neuroscience (EIN), School of Medicine, Ewha Womans University, Seoul 110-783, South Korea.
Abstract:Working on the idea that postsynaptic and presynaptic mechanisms of long-term potentiation (LTP) expression are not inherently mutually exclusive, we have looked for the existence and functionality of presynaptic mechanisms for augmenting transmitter release in hippocampal slices. Specifically, we asked if changes in glutamate release might contribute to the conversion of 'silent synapses' that show N-methyl-D-aspartate (NMDA) responses but no detectable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses, to ones that exhibit both. Here, we review experiments where NMDA receptor responses provided a bioassay of cleft glutamate concentration, using opposition between peak [glu](cleft )and a rapidly reversible antagonist, L-AP5. We discuss findings of a dramatic increase in peak [glu](cleft) upon expression of pairing-induced LTP (Choi). We present simulations with a quantitative model of glutamatergic synaptic transmission that includes modulation of the presynaptic fusion pore, realistic cleft geometry and a distributed array of postsynaptic receptors and glutamate transporters. The modelling supports the idea that changes in the dynamics of glutamate release can contribute to synaptic unsilencing. We review direct evidence from Renger et al., in accord with the modelling, that trading off the strength and duration of the glutamate transient can markedly alter AMPA receptor responses with little effect on NMDA receptor responses. An array of additional findings relevant to fusion pore modulation and its proposed contribution to LTP expression are considered.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号