首页 | 本学科首页   官方微博 | 高级检索  
     


Long‐term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA
Authors:Eric Capo  Didier Debroas  Fabien Arnaud  Typhaine Guillemot  Vincent Bichet  Laurent Millet  Emilie Gauthier  Charly Massa  Anne‐Lise Develle  Cécile Pignol  Franck Lejzerowicz  Isabelle Domaizon
Affiliation:1. CARRTEL, INRA, Université de Savoie Mont Blanc, Thonon‐les‐bains, France;2. Université Clermont Auvergne, Laboratoire “Microorganismes: Génome et Environnement”, Université Blaise Pascal, Clermont‐Ferrand, France;3. CNRS, UMR 6023, LMGE, Aubière, France;4. CNRS, UMR 5204 EDYTEM, Université Savoie Mont Blanc, 5 Boulevard de la mer Caspienne, 73376 Le Bourget du Lac Cedex, France;5. Laboratoire Chrono‐Environnement, UMR 6249 CNRS, Université de Bourgogne Franche‐Comté, 16 Route de Gray, 25000 Besan?on, France;6. Department of Genetics and Evolution, University of Geneva, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
Abstract:Assessing the extent to which changes in lacustrine biodiversity are affected by anthropogenic or climatic forces requires extensive palaeolimnological data. We used high‐throughput sequencing to generate time‐series data encompassing over 2200 years of microbial eukaryotes (protists and Fungi) diversity changes from the sedimentary DNA record of two lakes (Lake Bourget in French Alps and Lake Igaliku in Greenland). From 176 samples, we sequenced a large diversity of microbial eukaryotes, with a total 16 386 operational taxonomic units distributed within 50 phylogenetic groups. Thus, microbial groups, such as Chlorophyta, Dinophyceae, Haptophyceae and Ciliophora, that were not previously considered in lacustrine sediment record analyses appeared to be potential biological markers of trophic status changes. Our data suggest that shifts in relative abundance of extant species, including shifts between rare and abundant taxa, drive ecosystem responses to local and global environmental changes. Community structure shift events were concomitant with major climate variations (more particularly in Lake Igaliku). However, this study shows that the impacts of climatic fluctuations may be overpassed by the high‐magnitude eutrophication impacts, as observed in the eutrophicated Lake Bourget. Overall, our data show that DNA preserved in sediment constitutes a precious archive of information on past biodiversity changes.
Keywords:climate change     eDNA     eutrophication  lake  protists
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号