首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell Proliferation and Oxygen Diffusion in a Vascularising Scaffold
Authors:Kerry A Landman  Anna Q Cai
Institution:(1) Department of Mathematics and Statistics, University of Melbourne, Victoria, 3010, Australia
Abstract:The supply of oxygen to proliferating cells within a scaffold is a key factor for the successful building of new tissue in soft tissue engineering applications. A recent in vivo model, where an arteriovenous loop is placed in a scaffold, allows a vascularising network to form within a scaffold, establishing an oxygen source within, rather than external, to the scaffold. A one-dimensional model of oxygen concentration, cell proliferation and cell migration inside such a vascularising scaffold is developed and investigated. In addition, a vascularisation model is presented, which supports a vascularisation front which moves at a constant speed. The effects of vascular growth, homogenous and heterogenous seeding, diffusion of cells and critical hypoxic oxygen concentration are considered. For homogenous seeding, a relationship between the speed of the vascular front and a parameter defining the rate of oxygen diffusion relative to the rate of oxygen consumption determines whether a hypoxic region exists at some time. In particular, an estimate of the length of time that a fixed point in the scaffold will remain under hypoxic conditions is determined. For heterogenous seeding, a Fisher-like travelling wave of cells is established behind the vascular front. These findings provide a fundamental understanding of the important interplay between the parameters and allows for a theoretical assessment of a seeding strategy in a vascularising scaffold.
Keywords:Cell migration  Proliferation  Oxygen transport  Vascular  Scaffold  Tissue engineering
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号