首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein
Authors:A B Pawagi  C M Deber
Institution:Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
Abstract:D-Glucose transport by the 492-residue human erythrocyte hexose transport protein may involve ligand-mediated conformational/positional changes. To examine this possibility, hydrophilic quencher molecules potassium iodide and acrylamide (ACR)] were used to monitor the quenching of the total protein intrinsic fluorescence exhibited by the six protein tryptophan (Trp) residues in the presence and absence of substrate D-glucose, and in the presence of the inhibitors maltose and cytochalasin B. Protein fluorescence was found to be quenched under various conditions, ca. 14-24% by KI and ca. 25-33% by ACR, indicating that the bulk of the Trp residue population occurs in normally inaccessible hydrophobic regions of the erythrocyte membrane. However, in the presence of D-glucose, quenching by KI and ACR decreased an average of -3.4% and -4.4%, respectively; Stern-Volmer plots displayed decreased slopes in the presence of D-glucose, confirming the relatively reduced quenching. In contrast, quenching efficiency increased in the presence of maltose (+5.9%, +3.3%), while addition of cytochalasin B had no effect on fluorescence quenching. The overall results are interpreted in terms of ligand-activated movement of an initially aqueous-located protein segment containing a Trp residue into, or toward, the cellular membrane. Relocation of this segment, in effect, opens the D-glucose channel; maltose and cytochalasin B would thus inhibit transport by mechanisms which block this positional change. Conformational and hydropathy analyses suggested that the region surrounding Trp-388 is an optimal "dynamic segment" which, in response to ligand activation, could undergo the experimentally deduced aqueous/membrane domain transfer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号