Monoclonal antibodies to common epitopes of the human alpha/beta T-cell receptor preferentially activate CD45RA+ T-cells. |
| |
Authors: | R Schwinzer H J Schlitt K Wonigeit |
| |
Affiliation: | Klinik für Abdominal- und Transplantationschirurgie, Medizinische Hochschule Hannover, Federal Republic of Germany. |
| |
Abstract: | The murine monoclonal antibody BMA 031 (IgG2b) is directed to a monomorphic epitope on the human alpha/beta T-cell receptor. In contrast to anti-CD3 antibodies of the IgG2b isotype, BMA 031 is able to induce a proliferative response in T-cells from IgG2b low responders. This response occurs independently of cross-linking conditions indicating that the mode of activation differs from stimulation by the anti-CD3 antibody OKT3 (IgG2a) which strictly depends on cross-linking conditions. to further characterize the stimulatory potential of the two antibodies we studied the lymphocyte subsets responsive to stimulation by BMA 031 and OKT3. In CD45RA+ cells both antibodies exhibited similar effects. They induced weak expression of the 55-kDa chain of the interleukin-2 receptor (CD25), virtually no interleukin-2 secretion, but nevertheless strong proliferation. In CD45R0+ cells OKT3 and BMA 031 showed markedly different effects. OKT3 stimulated strong CD25 expression, strong interleukin-2 production, and marked proliferation. In contrast, CD45R0+ cells stimulated by BMA 031 showed only weak CD25 expression but neither interleukin-2 production nor proliferation. These data suggest that CD45RA+ and CD45R0+ cells differ in their capability to produce interleukin-2 upon stimulation via the CD3/T-cell receptor complex and also in the requirement for interleukin-2 to mount a proliferative response. The differential effect of OKT3 and BMA 031 in CD45R0+ cells probably results from the failure of BMA 031 to trigger interleukin-2 production which may be a consequence of its inability to induce CD3/T-cell receptor cross-linking in IgG2b low responders BMA 031 is therefore a useful tool for the selective activation of CD45RA+ cells in these individuals. |
| |
Keywords: | |
|
|