首页 | 本学科首页   官方微博 | 高级检索  
     


Optimizing the immobilization of single-stranded DNA onto glass beads
Authors:Walsh M K  Wang X  Weimer B C
Affiliation:Department of Nutrition and Food Sciences, Center for Microbial Detection and Physiology, Utah State University, Logan, UT 84322-8700, USA.
Abstract:The attachment of single-stranded DNA to a solid support has many biotechnology and molecular biology applications. This paper compares different immobilization chemistries to covalently link single-stranded DNA (20 base pairs), oligo(1), onto glass beads via a 5'-amino terminal end. Immobilization methods included a one-step 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and a two-step EDC reaction to succinylated and PEG-modified glass beads. The third method used 1,4-phenylene diisothiocyanate to immobilize oligo(1) to aminopropyl glass beads. The influence of coupling buffer, oligo(1) concentration, and EDC concentration was also investigated. The one-step EDC-mediated procedure with succinylated or PEG-modified beads in 0.1 M MES buffer, pH 4.5, resulted in the highest immobilization efficiency, 82-89%. EDC concentrations greater than 50 mM and oligo(1) concentrations of 3 microg/g bead were required for effective immobilization. A complementary oligonucleotide, oligo(2), was able to hybridize to the immobilized oligo(1) with a 58% efficiency. This oligonucleotide was subsequently released at 70 degrees C. The relationship between the surface density of oligo(1) and the hybridization efficiency of the complementary oligonucleotide is described.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号