首页 | 本学科首页   官方微博 | 高级检索  
     


Lysosomal N-acetyltransferase interacts with ALIX and is detected in extracellular vesicles
Authors:Anthony O. Fedele  Sandra Isenmann  Makoto Kamei  Marten F. Snel  Paul J. Trim  Christopher G. Proud  John J. Hopwood
Affiliation:Hopwood Centre for Neurobiology, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute (SAHMRI), PO Box 11060, Adelaide, South Australia, 5001, Australia
Abstract:Heparan acetyl CoA: α-glucosaminide N-acetyltransferase (HGSNAT) is a lysosomal multi-pass transmembrane protein whose deficiency may lead to an accumulation of heparan sulphate and the neurodegenerative lysosomal storage disorder mucopolysaccharidosis (MPS) IIIC. In this study, HGSNAT activity was detected in extracellular vesicles isolated from both human urine and culture medium conditioned with HEK 293T cells. We also demonstrate that HGSNAT co-immunoprecipitates with antibodies to ALIX, which is associated with the endosomal sorting complexes required for transport (ESCRT) proteins, and is implicated in the targeting of proteins to intraluminal vesicles of multivesicular bodies, the origin of exosomes. Furthermore, mutation of a putative LYPXnL-based binding site within HGSNAT for the V-domain of ALIX ablated association of HGSNAT with ALIX, post-translational maturation, and transport through the endo-lysosomal network. Unexpectedly, however, a mutation within the V-domain of ALIX demonstrated enhanced HGSNAT association, perhaps due to the actual involvement of other binding sites in this interaction. Indeed, HGSNAT still co-immunoprecipitates with truncations of ALIX lacking the V-domain. Interestingly, CRISPR/Cas9 mediated knock-down of ALIX did not inhibit HGSNAT trafficking through the endo-lysosomal network, suggesting that there is an alternative pathway for trafficking HGSNAT that does not require ALIX. Nonetheless, the targeting of HGSNAT to extracellular vesicles may provide a mechanism to subsequently transfer this enzyme extracellularly to provide a foundation for a therapy for MPS IIIC patients.
Keywords:Extracellular vesicle  Endosomal sorting complexes required for transport (ESCRT)  ALIX  Lysosome  Heparan sulfate  Corresponding author.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号