首页 | 本学科首页   官方微博 | 高级检索  
     


Tuning G-quadruplex vs double-stranded DNA recognition in regioisomeric lysyl-peptidyl-anthraquinone conjugates
Authors:Zagotto Giuseppe  Ricci Antonio  Vasquez Elena  Sandoli Andrea  Benedetti Silvia  Palumbo Manlio  Sissi Claudia
Affiliation:Department of Pharmaceutical Sciences, University of Padova, Padova, Italy.
Abstract:Anthraquinone is a versatile scaffold to provide effective DNA binders. This planar system can be easily conjugated to protonable side chains: the nature of the lateral groups and their positions around the tricyclic moiety largely affect the DNA recognition process in terms of binding affinity and mode, as well as sequence and structure of the target nucleic acid. Starting from an anthracenedione system symmetrically functionalized with N-terminal lysyl residues, we incremented the length of side chains by introducing a Gly, Ala, or Phe spacer, characterized by different flexibility, lipophilicity, and bulkiness. Moreover, 2,6, 2,7, 1,8, and 1,5 regioisomers were examined to yield a small bis(lysyl-peptidyl) anthracenedione library. By merging spectroscopic, enzymatic, and cellular results, we showed that the proper combination of a basic aminoacid (Lys) with a more hydrophobic residue (Phe) can provide selective G-quadruplex recognition, in particular when side chains are located at positions 2,6 or 2,7. In fact, while these derivatives effectively bind G-quadruplex structures, they behave at the same time as rather poor double-stranded DNA intercalators. As a result, the Lys-Phe substituted anthraquinones are poorly cytotoxic but still able to promote a senescence mechanism in cancer cells. This combination of chemical and biological properties foresees potentially valuable applications in anticancer medicinal chemistry.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号