首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of glycosphingolipid glycosyltransferase by low density lipoprotein receptors in cultured human proximal tubular cells
Authors:S Chatterjee  N Ghosh  E Castiglione  P O Kwiterovich
Affiliation:Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Abstract:We have shown previously that low density lipoproteins (LDL) suppressed the synthesis of lactosylceramide in normal human proximal tubular cells, but stimulated such synthesis in proximal tubular cells from LDL receptor negative subjects (Chatterjee, S., Clarke, K., and Kwiterovich, P.O., Jr. (1986) J. Biol. Chem. 261, 13474-13479). To understand the mechanism(s) of this effect of LDL, we have studied here the effects of LDL on the activity of UDP-GalCer:beta-galactosyltransferase (GalT-2). Maximum suppression (70-80%) of the activity of GalT-2 in normal proximal tubular cells at 37 degrees C occurred at a LDL concentration of 25 micrograms/ml medium. Such suppression was not observed either when the cells were incubated with LDL at 4 degrees C, or when the cells were preincubated with leupeptin, followed by incubation with LDL at 37 degrees C. High density lipoproteins and fetuin did not suppress the activity of GalT-2 in normal proximal tubular cells. In contrast LDL modified by reductive methylation (M-LDL, 100 micrograms/ml) stimulated the activity of GalT-2, approximately 3-fold. The effects of LDL and M-LDL were not related to their glycosphingolipid content. Much less suppression and stimulation of the activity of GalT-2 in proximal tubular cells by LDL and M-LDL, respectively, was found in normal human skin fibroblasts, Chinese hamster ovary cells, and bovine smooth muscle cells, suggesting that the LDL-mediated effect may be tissue-specific. In cells grown to very high density, the activity of the LDL receptor is decreased, and there was less suppression of GalT-2 activity by LDL. In normal proximal tubular cells, LDL stimulated the activity of UDP-Gal:LacCer, alpha-galactosyltransferase activity, UDP-Gal:LcOse3Cer, beta-galactosyltransferase, and CMP-NeuAc:LacCer,alpha-sialyltransferase activity but did not alter the activity of sulfotransferase. In conclusion, LDL that entered the normal proximal tubular cells via the LDL receptor-mediated pathway decreased GalT-2 activity, an effect that was dependent upon the binding, internalization, and degradation of receptor-bound LDL. In contrast LDL that entered normal or LDL receptor-negative proximal tubular cells via an LDL receptor-independent pathway failed to suppress GalT-2 activity, and led to a stimulation of LacCer synthesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号