首页 | 本学科首页   官方微博 | 高级检索  
     


Strand scission of deoxyribonucleic acid by neocarzinostatin, auromomycin, and bleomycin: studies on base release and nucleotide sequence specificity
Authors:M Takeshita  L S Kappen  A P Grollman  M Eisenberg  I H Goldberg
Abstract:The nucleotide sequence specificity of neocarzinostatin (NCS), auromomycin (AUR), bleomycin (Blm), phleomycin (Phlm), and tallysomycin (Tlm) has been determined by using these antibiotics and their associated chromophores to create strand scissions in end-labeled restriction fragments of DNA and then determining the base sequence of the oligonucleotides formed. NCS and the NCS chromophore induce similar patterns of cleavage in DNA fragments labeled at the 5' terminus. The pattern produced by the AUR chromophore also resembles that of its holoantibiotic. Dithiothreitol enhances the rate of cleavage of DNA by the AUR chromophore but does not alter the sequence specificity. The results suggest that the polypeptide component of AUR and NCS serves primarily as a carrier for the chromophore. When tested with a fragment labeled at the 3' terminus, the products of NCS and AUR cleavage do not display the patterns of chemically produced oligonucleotides cleaved at phosphodiester bonds, suggesting that the 5' terminus is modified by a sugar fragment. NCS primarily attacks thymine (75% of the total bases attacked) and, to a lesser extent, adenine (19%) and cytosine (6%). AUR preferentially attacks guanine (67% of total bases), while attacking less often thymine (24%) and adenine (9%). Bleomycin and its analogues preferentially cleave purine--pyrimidine (5' leads to 3') and pyrimidine--pyrimidine (3' leads to 5') sequences. All (5' leads to 3') GT and GC sequences were cleaved. Phlm G and Phlm-Pep are less active than bleomycin toward purines while Tlm was more active. The patterns of cleavage produced by Blm A2 and Blm B6 are similar, while those produced by Phlm-Pep, Phlm G, Blm-B1', and Blm-Pep resemble one another. The cleavage pattern of Tlm shows quantitative differences from the other analogues tested. Differences between bleomycin and its analogues may be related to structural differences in these molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号