首页 | 本学科首页   官方微博 | 高级检索  
     


The Reactivity, Distribution and Abundance of Non-Astrocytic Inner Retinal Glial (NIRG) Cells Are Regulated by Microglia, Acute Damage, and IGF1
Authors:Christopher P Zelinka  Melissa A Scott  Leo Volkov  Andy J Fischer
Affiliation:Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America.
Abstract:Recent studies have described a novel type of glial cell that is scattered across the inner layers of the avian retina and possibly the retinas of primates. These cells have been termed Non-astrocytic Inner Retinal Glial (NIRG) cells. These cells are stimulated by insulin-like growth factor 1 (IGF1) to proliferate, migrate distally into the retina, and become reactive. These changes in glial activity correlate with increased susceptibility of retinal neurons and Müller glia to excitotoxic damage. The purpose of this study was to further study the NIRG cells in retinas treated with IGF1 or acute damage. In response to IGF1, the reactivity, proliferation and migration of NIRG cells persists through 3 days after treatment. At 7 days after treatment, the numbers and distribution of NIRG cells returns to normal, suggesting that homeostatic mechanisms are in place within the retina to maintain the numbers and distribution of these glial cells. By comparison, IGF1-induced microglial reactivity persists for at least 7 days after treatment. In damaged retinas, we find a transient accumulation of NIRG cells, which parallels the accumulation of reactive microglia, suggesting that the reactivity of NIRG cells and microglia are linked. When the microglia are selectively ablated by the combination of interleukin 6 and clodronate-liposomes, the NIRG cells down-regulate transitin and perish within the following week, suggesting that the survival and phenotype of NIRG cells are somehow linked to the microglia. We conclude that the abundance, reactivity and retinal distribution of NIRG cells can be dynamic, are regulated by homoestatic mechanisms and are tethered to the microglia.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号