首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization and phylogenetic analysis of a thermostable N-carbamoyl-<Emphasis Type="SmallCaps">l</Emphasis>-amino acid amidohydrolase from<Emphasis Type="Italic"> Bacillus kaustophilus</Emphasis> CCRC11223
Authors:Hui-Yu?Hu  Wen-Hwei?Hsu  Email author" target="_blank">Hungchien?Roger?ChienEmail author
Institution:Department of Food Science and Nutrition, Hung Kuang Institute of Technology, 433, Taichung, Taiwan.
Abstract:A thermostable N-carbamoyl- l-amino acid amidohydrolase ( l-N-carbamoylase) gene composed of an 1,230-bp ORF encoding a 44.3-kDa protein was cloned from the thermophile Bacillus kaustophilus CCRC11223. This l-N-carbamoylase contained six cysteine residues that form three disulfide bridges. The purified l-N-carbamoylase was stringently l-specific and exhibited high activity in the hydrolysis of N-carbamoyl- l-homophenylalanine. N-carbamoyl derivatives of beta-alanine, beta-aminoisobutyric acids, l-tryptophan, and d-specific amino acids were not recognized as substrates. The l-N-carbamoylase required the divalent metal ions Mn(2+), Co(2+), and Ni(2+) for increasing activity. The pH and temperature optima of the enzyme were pH 7.4 and 70 degrees C, respectively. This enzyme was completely thermostable at 50 degrees C for 36 days in the presence of d- and/or l-specific substrates. Phylogenetic analysis of the available amino acid sequences of N-carbamoyl and N-acyl amino acid amidohydrolases from the three main kingdoms of life showed that they can be divided into four distinct families. The B. kaustophilus enzyme could be classified into the family of l-N-carbamoylases and some beta-ureidopropionases, but did not hydrolyze beta-ureidopropionates.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号