首页 | 本学科首页   官方微博 | 高级检索  
     


TORC1 is essential for NF1-associated malignancies
Authors:Johannessen Cory M  Johnson Bryan W  Williams Sybil M Genther  Chan Annie W  Reczek Elizabeth E  Lynch Ryan C  Rioth Matthew J  McClatchey Andrea  Ryeom Sandra  Cichowski Karen
Affiliation:Genetics Division, Department of Medicine, Brigham and Women's Hospital, Ludwig Center at Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract:Inactivating mutations in NF1 underlie the prevalent familial cancer syndrome neurofibromatosis type 1 [1]. The NF1-encoded protein is a Ras GTPase-activating protein (RasGAP) [2]. Accordingly, Ras is aberrantly activated in NF1-deficient tumors; however, it is unknown which effector pathways critically function in tumor development. Here we provide in vivo evidence that TORC1/mTOR activity is essential for tumorigenesis. Specifically, we show that the mTOR inhibitor rapamycin potently suppresses the growth of aggressive NF1-associated malignancies in a genetically engineered murine model. However, in these tumors rapamycin does not function via mechanisms generally assumed to mediate tumor suppression, including inhibition of HIF-1alpha and indirect suppression of AKT, but does suppress the mTOR target Cyclin D1 [3]. These results demonstrate that mTOR inhibitors may be an effective targeted therapy for this commonly untreatable malignancy. Moreover, they indicate that mTOR inhibitors do not suppress all tumor types via the same mechanism, suggesting that current biomarkers that rely on HIF-1alpha suppression may not be informative for all cancers. Finally, our results reveal important differences between the effects of mTOR inhibition on the microvasculature in genetically engineered versus xenograft models and indicate that the former may be required for effective preclinical screening with this class of inhibitors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号