首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway
Authors:Meng De-Chuan  Shi Zhen-Yu  Wu Lin-Ping  Zhou Qin  Wu Qiong  Chen Jin-Chun  Chen Guo-Qiang
Institution:MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
Abstract:Copolyesters of 3-hydroxypropionate (3HP) and 4-hydroxybutyrate (4HB), abbreviated as P(3HP-co-4HB), was synthesized by Escherichia coli harboring a synthetic pathway consisting of five heterologous genes including orfZ encoding 4-hydroxybutyrate-coenzyme A transferase from Clostridium kluyveri, pcs' encoding the ACS domain of tri-functional propionyl-CoA ligase (PCS) from Chloroflexus aurantiacus, dhaT and aldD encoding dehydratase and aldehyde dehydrogenase from Pseudomonas putida KT2442, and phaC1 encoding PHA synthase from Ralstonia eutropha. When grown on mixtures of 1,3-propanediol (PDO) and 1,4-butanediol (BDO), compositions of 4HB in microbial P(3HP-co-4HB) were controllable ranging from 12 mol% to 82 mol% depending on PDO/BDO ratios. Nuclear magnetic resonance (NMR) spectra clearly indicated the polymers were random copolymers of 3HP and 4HB. Their mechanical and thermal properties showed obvious changes depending on the monomer ratios. Morphologically, P(3HP-co-4HB) films only became fully transparent when monomer 4HB content was around 67 mol%. For the first time, P(3HP-co-4HB) with adjustable monomer ratios were produced and characterized.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号