首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Single Genetic Determinant that Prevents Sex Reversal in C57BL-YPOS Congenic Mice
Authors:J Barry Whitney III  Thomas M Mills  Ronald W Lewis  Roger Wartell  Tom O Abney
Institution:(1) Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, 30912;(2) Department of Physiology and Endocrinology, Medical College of Georgia, Augusta, Georgia, 30912;(3) Department of Surgery, Urology Section, Medical College of Georgia, Augusta, Georgia, 30912;(4) School of Biology, Georgia Institute of Technology, Atlanta, Georgia, 30332
Abstract:Sex determination in the mammalian embryo begins with the activation of a gene on the Y chromosome which triggers a cascade of events that lead to male development. The mechanism by which this gene, designated SRY in humans and Sry in mice (sex determining region of the Y chromosome), is activated remains unknown. Likewise, the downstream target genes for Sry remain unidentified at present. C57BL mice carrying a Y chromosome from Mus musculus musculus or molossinus develop normally as males. In contrast, C57BL/6 mice with the Y chromosome from M. m. domesticus often show sex reversal, i.e., develop as XY females. It has been documented that C57BL mice with the Y chromosome from Poschiavinus (YPOS), a domesticus subtype, always develop as females or hermaphrodites. This suggests that a C57BL gene either up- or downstream of Sry is ineffective in interacting with Sry, which then compromises the processes that lead to normal male sex development. Nonetheless, by selective breeding, we have been able to generate a sex reversal-resistant C57BL/6-congenic strain of mice in which the XYPOS individuals consistently develop as normal males with bilateral testes. Because the resistance to sex reversal was transferred from strain 129S1/Sv (nonalbino) by simple selection over 13 backcross generations, it is inferred that a single autosomal gene or chromosomal region confers resistance to the sex reversal that would otherwise result. XYPOS normal males generated in these crosses were compared to XYPOS abnormal individuals and to C57BL/6 controls for sexual phenotype, gonadal weight, serum testosterone, and major urinary protein (MUP) level. A clear correlation was found among phenotypic sex, MUP level, and testis weight in the males and in the incompletely masculinized XYPOS mice. The fully masculinized males of the congenic strain resemble C57BL/6 males in the tested parameters. DNA analysis confirmed that these males, in fact, carry the YPOS Sry gene.
Keywords:sex determination  Sry gene  Y chromosome  sex reversal  mouse genetics  major urinary protein  testosterone  
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号