首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Meristem fate and bulbil formation in Titanotrichum (Gesneriaceae)
Authors:Wang Chun-Neng  Cronk Quentin C B
Institution:Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK; and Institute of Cell and Molecular Biology, The University of Edinburgh, Edinburgh EH9 3JH, Scotland, UK.
Abstract:Titanotrichum oldhamii (a monotypic genus from Taiwan, Okinawa, and adjacent regions of China) has inflorescences bearing either showy yellow flowers or asexual bulbils. Asexual reproduction by bulbils is important in natural populations, and bulbil production increases in August and September at the end of the flowering season (which runs from June to the end of September). The bulbils are small (~1-2.5 mm long) and numerous. They consist of a small portion of stem (bract-stem) topped by opposite storage bracts that enclose a minute apical meristem. A secondary root develops from the side of the bract-stem. The floral meristem of T. oldhamii has three possible fates: (1) bulbil formation, (2) flower formation, or (3) bracteose proliferation. Bracteose proliferation rarely occurs and appears to be a developmental transition between the bulbiliferous and racemose inflorescence forms. It is strongly reminiscent of the floricaula and squamosa mutants of Antirrhinum. In the bulbiliferous form a single floral primordium, which would normally produce one flower, gives rise to ~50-70 bulbils by repeated subdivision of the meristem. This form of bulbil production appears to be unique to Titanotrichum. Occasionally a floral meristem divides, but the subdivision forms multiflowered units of up to four flowers rather than bulbils, suggesting that meristem fate is reversible up to the first or second meristem subdivision. In Titanotrichum, therefore, primordium fate is apparently not determined at inception but becomes irreversibly determined shortly after the appearance of developmental characteristics of the floral or bulbil pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号