首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of magnesium and a phagosomal P-type ATPase in intracellular bacterial killing
Authors:Lelong Emmanuelle  Marchetti Anna  Guého Aurélie  Lima Wanessa C  Sattler Natascha  Molmeret Maëlle  Hagedorn Monica  Soldati Thierry  Cosson Pierre
Institution:Département de Physiologie Cellulaire et Métabolisme, Faculté de Médecine de Genève, Centre Médical Universitaire, Geneva 4, Switzerland.
Abstract:Bacterial ingestion and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. However, only few proteins implicated in intracellular bacterial killing have been identified to date. We used Dictyostelium discoideum, a phagocytic bacterial predator, to study intracellular killing. In a random genetic screen we identified Kil2, a type V P-ATPase as an essential element for efficient intracellular killing of Klebsiella pneumoniae bacteria. Interestingly, kil2 knockout cells still killed efficiently several other species of bacteria, and did not show enhanced susceptibility to Mycobacterium marinum intracellular replication. Kil2 is present in the phagosomal membrane, and its structure suggests that it pumps cations into the phagosomal lumen. The killing defect of kil2 knockout cells was rescued by the addition of magnesium ions, suggesting that Kil2 may function as a magnesium pump. In agreement with this, kil2 mutant cells exhibited a specific defect for growth at high concentrations of magnesium. Phagosomal protease activity was lower in kil2 mutant cells than in wild-type cells, a phenotype reversed by the addition of magnesium to the medium. Kil2 may act as a magnesium pump maintaining magnesium concentration in phagosomes, thus ensuring optimal activity of phagosomal proteases and efficient killing of bacteria.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号