首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex
Authors:Genth Harald  Gerhard Ralf  Maeda Akio  Amano Mutsuki  Kaibuchi Kozo  Aktories Klaus  Just Ingo
Institution:Institut für Toxikologie, Medizinische Hochschule D-30625 Hannover, Germany. genth.harald@mh-hannover.de
Abstract:RhoA, -B, and -C are ADP-ribosylated by Clostridium botulinum exoenzyme C3 to induce redistribution of the actin filaments in intact cells, a finding that has led to the notion that the ADP-ribosylation blocks coupling of Rho to the downstream effectors. ADP-ribosylation, however, does not alter nucleotide binding, intrinsic, and GTPase-activating protein-stimulated GTPase activity. ADP-ribosylated Rho is even capable of activating the effector protein ROK in a recombinant system. Treatment of cells with a cell-permeable chimeric C3 toxin led to complete localization of modified Rho to the cytosolic fraction based on the complexation of ADP-ribosylated Rho with the guanine-nucleotide dissociation inhibitor-1 (GDI-1). The modified complex turned out to be resistant to phosphatidylinositol 4,5-bisphosphate- and GTPgammaS-induced release of Rho from GDI-1. Thus, ADP-ribosylation leads to entrapment of Rho in the GDI-1 complex. The increased stability of the GDI complex prevented binding of Rho to membrane-associated players of the GTPase cycle such as the activating guanine nucleotide exchange factors and effector proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号