首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro
Authors:Kusumoto R  Masutani C  Sugasawa K  Iwai S  Araki M  Uchida A  Mizukoshi T  Hanaoka F
Institution:Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamada-oka, Suita, 565-0871, Osaka, Japan.
Abstract:The XPC-HR23B complex, a mammalian factor specifically involved in global genomic nucleotide excision repair (NER) has been shown to bind various forms of damaged DNA and initiate DNA repair in cell-free reactions. To characterize the binding specificity of this factor in more detail, a method based on immunoprecipitation was developed to assess the relative affinity of XPC-HR23B for defined lesions on DNA. Here we show that XPC-HR23B preferentially binds to UV-induced (6-4) photoproducts (6-4PPs) as well as to cholesterol, but not to the cyclobutane pyrimidine dimer (CPD), 8-oxoguanine (8-oxo-G), O6-methylguanine (O6-Me-G), or a single mismatch. Human whole cell extracts could efficiently excise 6-4PPs and cholesterol in an XPC-HR23B-dependent manner, but not 8-oxo-G, O6-Me-G or mismatches. Thus, there was good correlation between the binding specificity of XPC-HR23B for certain types of lesion and the ability of human cell extracts to excise these lesions, supporting the model that XPC-HR23B initiates global genomic NER. Although, XPC-HR23B does not preferentially bind to CPDs, the excision of CPDs in human whole cell extracts was found to be absolutely dependent on XPC-HR23B, in agreement with the in vivo observation that CPDs are not removed from the global genome in XP-C mutant cells. These results suggest that, in addition to the excision repair pathway initiated by XPC-HR23B, there exists another sub-pathway for the global genomic NER that still requires XPC-HR23B but is not initiated by XPC-HR23B. Possible mechanisms will be discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号