首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential Regulation by Guanine Nucleotides of Opiate Agonist and Antagonist Receptor Interactions
Authors:Steven R Childers  Solomon H Snyder
Institution:Departments of Pharmacology and Experimental Therapeutics and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Abstract:Abstract: Guanine nucleotides differentiate binding of tritium-labeled agonists and antagonists to rat brain membranes. In the absence of sodium, GTP (50 μM) decreased binding of 3H]-labeled agonists by 20–60% and 3H]-labeled antagonists by 0–20%. In the presence of 100 mM-NaCl, GTP had no effect on antagonist binding, but decreased agonist binding by 60–95%. GMP was less potent than either GTP or GDP in decreasing agonist binding. GTP (50 μM) reduced high-affinity 3H]dihydromorphine sites by 52% and low-affinity sites by 55%. Without sodium, GTP reduced high-affinity 3H]-naloxone sites by 36%; in the presence of 100 mM-NaCl, GTP had no effect on either high- or low-affinity 3H]naloxone sites. GTP increased the association rate of 3H]dihydromorphine twofold and the dissociation rate by fourfold, while having no effect on association or dissociation rates of the antagonist 3H]diprenorphine. The affinities of uniabeled antagonists in inhibiting 3H]-diprenorphine binding were not affected by GTP or sodium, but the affinities of agonists were reduced 40- 120-fold, with met- and leu-enkephalin affinities reduced by the greatest degree. GTP and sodium lowered 3H]dihydromorphine binding in an additive fashion, while divalent cations, especially manganese, reversed the effects of GTP on 3H]-labeled agonist binding by stimulating membrane-bound phosphatases that hydrolyze GTP to GMP and guanosine. These results suggest that by affecting binding of agonists, but not antagonists, GTP may regulate opiate receptor interactions with their physiological effectors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号