首页 | 本学科首页   官方微博 | 高级检索  
     


THE RESISTANCE OF INSECT PARASITOIDS TO THE DEFENCE REACTIONS OF THEIR HOSTS
Authors:GEORGE SALT
Affiliation:King's College and the Department of Zoology. University of Cambridge
Abstract:Some of the following propositions are to be read as suggestions or hypotheses, supported by circumstantial or direct evidence, but not yet rigorously demonstrated. An estimate of the significance to be attached to each should be gathered from the body of the paper rather than from the following brief statements. 1.The problem is posed: how do endophagous parasitoids counteract the haemocytic defence reactions of their usual hosts? 2.It has been demonstrated that the egg and young first-instar larva of Nemeritis canescens have a coating on their surface which enables them to escape the attention of the haemocytes of their usual host, and to develop without exciting a defence reaction. The coating is applied to the egg before it is laid, and to the cuticle of the larva before it hatches. A little evidence suggests that some other ichneumon wasps of the subfamily Ophioninae may use this mechanism of resistance. 3.Older first-instar larvae, and the second and later instars, of many parasitoids, both hymenopterous and dipterous, probably overcome the haemocytic reaction of their host by rapid feeding, which depletes its blood both of cells and of nutrients, and so drains its resources that haematopoiesis is prevented and encapsulation becomes impossible. 4.The common habit of parasitoids of lingering in the first instar, before ingesting much food, while the host goes on developing to another stage or undergoes diapause, may enable the larva to retain a protective coating that would have become ineffective if it had grown. When at length the larva does feed and grow, the preceding mechanism (3) comes into play. 5.The teratocytes and pseudogerms formed by many species in several families of Hymenoptera absorb nutrients on a large scale from the blood of the host. They act quickly, as soon as the larva hatches. I suggest that by their attrition of the host's reserves of food, and its consequent debility, they prevent an effective haemocytic reaction to the young parasitoid. 6.Some dipterous and hymenopterous parasitoids first inhabit the intestine of their host, and do not penetrate the body cavity until they are ready to overwhelm the defence reactions by rapid and gross feeding. 7.Parasitoids that live temporarily inside an organ of the host may there acquire a coating which protects them from reaction by the blood cells. 8.Species of parasitoids that occupy an organ of the host for a long period, and develop inside it, escape a defence reaction because they live within the connective tissue covering the organ, to which the blood cells do not react. 9.Eggs of hymenopterous parasitoids laid within the embryos of their hosts may be treated by the embryonic blood cells as a developing organ, and become covered with connective tissue as those organs are. Thereafter they would not be recognized as foreign bodies. 10.Parasitoid eggs laid in the eggs or the young larvae of their host may be coated with host substances, or covered by connective tissue (9), before the blood of the host be comes capable of vigorousdefence reactions. They would there after escape recognition as foreign bodies. This may be the advantage of the habit of the so-called egg-larval parasitoids. 11.Reasons have been given by Schneider (1950) for his belief that the serosa of the ichneumon wasp Diplazon fissorius secretes something that locally inhibits the defence reactions of its hosts. The trophamnion and pseudoserosa of some parasitoid eggs may have this function. 12. Some parasitoids, especially second- and third-instar larvae of Tachinidae, physically repulse the haemocytes of their host, moulding them into a capsule that serves the maggot as a respiratory sheath.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号