首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation of extensin precursors by direct elution of intact tomato cell suspension cultures
Authors:James J Smith  EPatrick Muldoon  Derek TA Lamport
Institution:MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, U.S.A.
Abstract:Dilute salt solutions eluted peroxidase and hydroxyproline-rich glycoproteins (HRGP's) very rapidly (60 % within 10s) from the surface of intact tomato cells grown in suspension culture. Further purification of the HRGPs based on (a) their solubility in 10% trichloroacetic acid and (b) chromatography on carboxymethyl cellulose, gave two components (P1 and P2) rich in serine, tyrosine, lysine and arabinosylated hydroxyproline. The sum of the hydroxyproline arabinoside profiles of P1 and P2 approximated that of the wall. P1, unlike P2, was histidine-rich and also contained proline. Significantly, isodityrosine (IDT) was absent from P1 and P2 but present in cell wall hydrolysates where, the Hyp:IDT molar ratio was ca 15: 1. In cells 4 days after subculture, 3H-proline pulse-chase data indicated turnover of P1 and P2 presumably resulting from covalent attachment to the wall as neither P1 nor P2 appeared in the growth medium. At day four the cell mean generation time (MGT) was 4.6 days, the cell hydr oxyproline content was 0.7 % (w/w), the half lives of P1 and P2 were both ca 12 hr, and the combined CaCl2 elutable P1 and P2 precursor pools contained ca 400 μg Hyp/g cells (dry weight). Calculated from the MGT and Hyp content, the cell demand was 44.μg Hyp/g cells (dry weight)/hr. The precursor pool size was therefore sufficient for 9 hours growth. However the pool turnover calculated from half life and pool size was 5.6 %/hr or 22.4μg Hyp/g cells (dry weight)/hr. Thus the supply of P1 and P2 precursors met > 50 % of the cell wall demand. Corroborative experiments showed that after depletion of the P1 and P2 pools by salt elution, washed cells resuspended in growth medium repleted the precursor pools at a rate corresponding to a synthesis of 43μg Hyp/g cells (dry weight)/hr, or 98 % of the demand. These data allow us to make the following suggestions: P1 and P2 represent monomeric extensin precursor subunits. Salt elution of P1 and P2 indicates their ionic binding by pectic carboxyl groups. The rapidity of elution indicates a high diffusivity of these extended rodlike macromolecules through the cell wall. This may imply a preferred orientation for P1 and P2 perpendicular rather than parallel to the plane of the wall. The lack of IDT in P1 and P2 implies that IDT forms in muro, possibly via peroxidase. We speculate that some of these IDT residues may crosslink an extensin precursor ‘tweft’ around a cellulose microfibrillar ‘twarp’. Such formation of heteromultimeric extensin interpenetrated by microfibrils would create a mechanically coupled extensin-cellulose network.
Keywords:Solanaceae  tomato  extensin precursor  cell suspension cultures  peroxidase  cell wall  hydroxyproline rich glycoprotein    CMC  carboxymethyl cellulose  Hyp  hydroxyproline  HRGP  hydroxyproline-rich glycoprotein  IDT  isodityrosine  MGT  mean generation time  PCV  packed cell volume  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号