首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Engineering isoflavone metabolism with an artificial bifunctional enzyme
Authors:L Tian  RA Dixon
Institution:(1) Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
Abstract:Plant secondary metabolism has been a focus of research in recent years due to its significant roles in plant defense and in human medicine and nutrition. A protein engineering strategy was designed to more effectively manipulate plant secondary metabolite (isoflavonoid) biosynthesis. A bifunctional isoflavone synthase/chalcone isomerase (IFS/CHI) enzyme was constructed by in-frame gene fusion, and expressed in yeast and tobacco. The fusion protein was targeted to the endoplasmic reticulum (ER) membrane and the individual enzymatic functions of its component fragments were retained when assayed in yeast. Petals and young leaves of IFS/CHI transgenic tobacco plants produced higher levels of the isoflavone genistein and genistein glycosides as a ratio of total flavonoids produced than did plants transformed with IFS alone. Thus, through a combined molecular modeling, in vitro protein engineering and in planta metabolic engineering approach, it was possible to increase the potential for accumulation of isoflavonoid compounds in non-legume plants. Construction of bifunctional enzymes will simplify the transformation of plants with multiple pathway genes, and such enzymes may find broad uses for enzyme (e.g., cytochrome P450 family) and biochemical pathway engineering.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.
Keywords:Chalcone isomerase  Cytochrome P450  Fusion enzyme  Isoflavone synthase  Legume  Metabolic engineering
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号