首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells
Authors:Taguchi Goro  Shitchi Yoshihiro  Shirasawa Sakiko  Yamamoto Hirobumi  Hayashida Nobuaki
Institution:Division of Gene Research, Department of Life Sciences, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan. gtagtag@giptc.shinshu-u.ac.jp
Abstract:Tobacco cells (Nicotiana tabacum L. Bright Yellow T-13) exposed to harmful naphthols accumulate them as glucosylated and further modified compounds Taguchi et al. (2003a) Plant Sci. 164, 231-240]. In this study, we identified the accumulated compounds to be 6'-O-malonylated glucosides of naphthols. Cells treated with various phenolic compounds accumulated the flavonoids mainly as malonylglucosides. To clarify the function of this malonylation in tobacco, we isolated the cDNA encoding a malonyltransferase (NtMaT1) from a cDNA library derived from tobacco cells. The heterologous expression of the gene in Escherichia coli revealed that the recombinant enzyme had malonyltransferase activity against several phenolic glucosides such as flavonoid 7-O-glucosides, flavonoid 3-O-glucosides and naphthol glucosides. The substrate preference of the enzyme was similar to that of the tobacco cell extract. Malonylation activity in the transgenic cells markedly decreased with the suppression of the expression of NtMaT1 mRNA in tobacco BY-2 cells by RNA interference. The compounds administered to the transgenic cells were accumulated in the cells as glucosides or other modified compounds in place of malonylglucosides. These results show that NtMaT1 is the main catalyst of malonylation on glucosides of xenobiotic flavonoids and naphthols in tobacco plants.
Keywords:malonyltransferase  flavonoids  naphthols  tobacco  RNA interference  xenobiotics
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号