首页 | 本学科首页   官方微博 | 高级检索  
     


Modulation of apical Na permeability of the toad urinary bladder by intracellular Na,Ca, and H
Authors:Lawrence G. Palmer
Affiliation:(1) Department of Physiology, Cornell University Medical College, 10021 New York, New York
Abstract:Summary The Na conductance of the apical membrane of the toad urinary bladder was measured at different concentrations of Na both in the external medium and in the cell. Bladders were bathed in high K-sucrose medium to reduce basal-lateral resistance and voltage, and the transepithelial currents measured under voltage-clamp conditions. Amiloride was used as a specific blocker of the apical Na channel. At constant external Na, the internal Na concentration was increased by blocking the basallateral Na pump with ouabain. With high Na activity in the mucosal medium (86mm), increases in intracellular Na activity from 10 to over 40mm increased the amiloride-sensitive slope conductance at zero voltage while apical Na permeability, estimated from current-voltage plots using the constant field equation, decreased by less than 20%. Lowering the serosal Ca concentration from 1 to 0.1mm had no effect on the change inPNa with increasing Nac, but increasing serosal Ca to 5mm enhanced the reduction inPNa with increasing Nac, presumably by increasing Ca influx into the cell.PNa was also reduced by serosal vanadate (0.5mm), a putative blocker of ATP-dependent Ca extrusion from the cell, and by acute exposure to CO2, which presumably acidifies the cytoplasm. Current-voltage relationships of the amiloridesensitive transport pathway were also measured in the absence of a Na gradient across the apical membrane. These plots show that outward current passes through the channels somewhat less easily than does inward current. The shape of theI-V relationships was not significantly altered by changes in cellular Na, Ca or H, indicating that the effects of these ions onPNa are voltage independent.
Keywords:tight epithelium  apical Na permeability  amiloride-sensitive Na channels  intracellular Na activity  intracellular Ca activity  intracellular pH
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号