首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pleistocene climatic changes drive diversification across a tropical savanna
Authors:Sally Potter  Alexander T Xue  Jason G Bragg  Dan F Rosauer  Emily J Roycroft  Craig Moritz
Institution:1. Research School of Biology, The Australian National University, Acton, ACT, Australia;2. Centre for Biodiversity Analysis, Acton, ACT, Australia;3. Department of Biology, City University of New York, New York, NY, USA;4. Department of Genetics, Rutgers University, Piscataway, NJ, USA;5. School of Biosciences, The University of Melbourne, Parkville, Vic., Australia;6. Sciences Department, Museums Victoria, Melbourne, Vic., Australia
Abstract:Spatial responses of species to past climate change depend on both intrinsic traits (climatic niche breadth, dispersal rates) and the scale of climatic fluctuations across the landscape. New capabilities in generating and analysing population genomic data, along with spatial modelling, have unleashed our capacity to infer how past climate changes have shaped populations, and by extension, complex communities. Combining these approaches, we uncover lineage diversity across four codistributed lizards from the Australian Monsoonal Tropics and explore how varying climatic tolerances interact with regional climate history to generate common vs. disparate responses to late Pleistocene change. We find more divergent spatial structuring and temporal demographic responses in the drier Kimberley region compared to the more mesic and consistently suitable Top End. We hypothesize that, in general, the effects of species’ traits on sensitivity to climate fluctuation will be more evident in climatically marginal regions. If true, this points to the need in climatically marginal areas to craft more species‐(or trait)‐specific strategies for persistence under future climate change.
Keywords:comparative phylogeography  demography  ectotherm  Pleistocene  SNP  tropics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号