首页 | 本学科首页   官方微博 | 高级检索  
     


Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe
Authors:Yunfeng Peng  Fei Li  Guoying Zhou  Kai Fang  Dianye Zhang  Changbin Li  Guibiao Yang  Guanqin Wang  Jun Wang  Yuanhe Yang
Affiliation:1. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China;2. University of Chinese Academy of Sciences, Beijing, China;3. Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China;4. Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, China
Abstract:Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N‐phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N‐induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed‐effects models to further determine the relative contributions of various factors to the N‐induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N‐induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment.
Keywords:carbon (C) cycle  ecosystem respiration  gross ecosystem productivity  net ecosystem carbon exchange  nitrogen addition  nitrogen:phosphorous (N:P) ratio  N‐P imbalance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号