首页 | 本学科首页   官方微博 | 高级检索  
     


Soil carbon and belowground carbon balance of a short‐rotation coppice: assessments from three different approaches
Authors:Gonzalo Berhongaray  Melanie S. Verlinden  Laura S. Broeckx  Ivan A. Janssens  Reinhart Ceulemans
Affiliation:Department of Biology, Research Centre of Excellence on Plant and Vegetation Ecology, University of Antwerp, Wilrijk, Belgium
Abstract:Uncertainty in soil carbon (C) fluxes across different land‐use transitions is an issue that needs to be addressed for the further deployment of perennial bioenergy crops. A large‐scale short‐rotation coppice (SRC) site with poplar (Populus) and willow (Salix) was established to examine the land‐use transitions of arable and pasture to bioenergy. Soil C pools, output fluxes of soil CO2, CH4, dissolved organic carbon (DOC) and volatile organic compounds, as well as input fluxes from litter fall and from roots, were measured over a 4‐year period, along with environmental parameters. Three approaches were used to estimate changes in the soil C. The largest C pool in the soil was the soil organic carbon (SOC) pool and increased after four years of SRC from 10.9 to 13.9 kg C m?2. The belowground woody biomass (coarse roots) represented the second largest C pool, followed by the fine roots (Fr). The annual leaf fall represented the largest C input to the soil, followed by weeds and Fr. After the first harvest, we observed a very large C input into the soil from high Fr mortality. The weed inputs decreased as trees grew older and bigger. Soil respiration averaged 568.9 g C m?2 yr?1. Leaching of DOC increased over the three years from 7.9 to 14.5 g C m?2. The pool‐based approach indicated an increase of 3360 g C m?2 in the SOC pool over the 4‐year period, which was high when compared with the ?27 g C m?2 estimated by the flux‐based approach and the ?956 g C m?2 of the combined eddy‐covariance + biometric approach. High uncertainties were associated to the pool‐based approach. Our results suggest using the C flux approach for the assessment of the short‐/medium‐term SOC balance at our site, while SOC pool changes can only be used for long‐term C balance assessments.
Keywords:bioenergy  carbon fluxes  carbon pools  land‐use change  poplar  Populus sp.  second‐generation biofuels  soil organic carbon
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号