首页 | 本学科首页   官方微博 | 高级检索  
     


Tree‐ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change
Authors:Shunsuke Tei  Atsuko Sugimoto  Hitoshi Yonenobu  Yojiro Matsuura  Akira Osawa  Hisashi Sato  Junichi Fujinuma  Trofim Maximov
Affiliation:1. Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan;2. National Institute of Polar Research, Tachikawa, Japan;3. College of Education, Naruto University of Education, Naruto, Japan;4. Forestry and Forest Products Research Institute, Tsukuba, Japan;5. Graduate School of Global Environmental studies, Kyoto University, Kyoto, Japan;6. Institute of Arctic Climate and Environment Research, Japan Agency for Marine‐Earth Science and Technology, Yokohama, Japan;7. Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan;8. Institute for Biological Problem of Cryolithozone, Siberian Division of Russian Academy of Sciences, Yakutsk, Russia;9. Institute of Natural Sciences, North‐Eastern Federal University, Yakutsk, Russia
Abstract:Circumboreal forest ecosystems are exposed to a larger magnitude of warming in comparison with the global average, as a result of warming‐induced environmental changes. However, it is not clear how tree growth in these ecosystems responds to these changes. In this study, we investigated the sensitivity of forest productivity to climate change using ring width indices (RWI) from a tree‐ring width dataset accessed from the International Tree‐Ring Data Bank and gridded climate datasets from the Climate Research Unit. A negative relationship of RWI with summer temperature and recent reductions in RWI were typically observed in continental dry regions, such as inner Alaska and Canada, southern Europe, and the southern part of eastern Siberia. We then developed a multiple regression model with regional meteorological parameters to predict RWI, and then applied to these models to predict how tree growth will respond to twenty‐first‐century climate change (RCP8.5 scenario). The projections showed a spatial variation and future continuous reduction in tree growth in those continental dry regions. The spatial variation, however, could not be reproduced by a dynamic global vegetation model (DGVM). The DGVM projected a generally positive trend in future tree growth all over the circumboreal region. These results indicate that DGVMs may overestimate future wood net primary productivity (NPP) in continental dry regions such as these; this seems to be common feature of current DGVMs. DGVMs should be able to express the negative effect of warming on tree growth, so that they simulate the observed recent reduction in tree growth in continental dry regions.
Keywords:boreal forest  climate change  climate sensitivity  DGVM  ITRDB  tree ring
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号