首页 | 本学科首页   官方微博 | 高级检索  
     


The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue (southern France)
Authors:H. L. Golterman
Affiliation:(1) Association "lsquo"Leiden-Camargue"rsquo", Station Biologique de la Tour du Valat, Le Sambuc, F-13200 Arles, France
Abstract:Wetlands, especially in the Mediterranean area, are subject to severe eutrophication. This may upset the equilibrium between phytoplankton production in undesirable quantities and a quantitatively desirable macrophyte production. In order to manage this equilibrium, a quantitative knowledge of nutrient input and fluxes is essential and the role of sediments in these processes must be understood. This knowledge can be useful even for agriculture, e.g. rice cultivation, where optimal utilization of fertilizers can lead to an economic benefit.In this article different aspects of nutrient cycles are discussed in view of approaching a sufficiently precise quantification. The nutrient input balance of the Camargue was therefore measured which showed that the input of nutrients with the irrigation water, taken from the river Rhone, roughly equals the quantity of fertilizers added.Phytoplankton growth can be approached reasonably with the Monod model, although there are still many practical problems, such as the influence of the pH on P uptake and the problem of measuring P uptake in the field. The situation is worse for macrophyte growth; quantitative data are scarce and studies have often been carried out with unrealistic nutrient concentrations or without addressing the influence of the sediment. This influence can also include negative factors, such as high concentrations of Fe2+, H2S or FeS, but cannot yet be quantified.The nitrogen cycle in wetlands is dominated by denitrification. Most wetlands have sediments with high concentrations of organic matter, therefore with a large reducing capacity. Besides this process, we have shown that denitrification can also be controlled by FeS. In the Camargue sediments this denitrification is mediated by bacteria from the sulfur cycle; this appeared to be the major pathway. It was shown that a stoicheiometric relation exists between nitrate reduced and sulphate produced. The influence of the temperature was quantified and appeared to be stronger at high organic matter concentrations than at lower ones. Denitrification with FeS means that the bacteria use nitrate also for their N demands, while this is not necessarily the case during denitrification with organic matter.Mineralization of macrophytes is a much slower process than that of phytoplankton, probably because of their high C/N ratio. We could, however, not confirm the general assumption that the addition of nitrogen stimulates this mineralization. On the contrary, we found that two amino acids both with a C/N ratio of 6 had different mineralization rates. The amino acid composition of dead macrophytes and the C/N ratio may be of equal importance.Unlike nitrogen, phosphate is always strongly adsorbed onto sediments. The two mechanisms of the adsorption of inorganic phosphate onto sediments, i.e. the adsorption onto Fe(OOH) and the precipitation of apatite, have been quantified. The adsorption of phosphate onto Fe(OOH) can be satisfactory described with the Freundlich adsorption isotherm: Pads = A* (o-P)B. The adsorption coefficient A depends on the pH of the system and the Ca2+ concentration of the overlying water and can be quantified preliminarily by A = a.10(–0.416*pH).(2.86 – (1.86.e–Ca2+)). B can be approached by 0.333, which means the cube root of the phosphate concentration. The second mechanism is the solubility of apatite. We found a solubility product of 10–50 for hard waters. The two mechanisms are combined in solubility diagrams which describe equilibrium situations for specific lakes.The conversion of Fe(OOH) to FeS has a strong influence on phosphate adsorption, although the partial reduction of Fe(OOH) ap P by H2S does not release significant quantities of phosphate. Even after complete conversion to FeS only a small part of the bound phosphate was released.Besides the two inorganic phosphate compounds, we established the existence of two organic pools, one soluble after extraction with strong acid (ASOP), the other one with strong alkali. The first pool is probably humic bound phosphate, while the larger part of the second pool was phytate. The ASOP was remineralized during the desiccation of a Camargue marsh; this drying up oxidized FeS, thus improving the phosphate adsorption and decreasing the denitrification capacity. It can, therefore, be an important tool for management. The phytate was strongly adsorbed onto Fe(OOH), which explains the non-bioavailability towards bacteria.The fact that the sediment phosphate concentration can be approached by multiplying the relevant sediment adsorption constant with % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOqaaeaaca% WGVbGaeyOeI0IaamiuaaWcbaGaaG4maaaaaaa!3B8D![sqrt[3]{{o - P}}] concentration has the consequence that much larger quantities of phosphate accumulate in the sediments than in the overlying water. This means that even if the phosphate input is stopped, the eutrophication will only be reversed very slowly, and not at all, if the shallow waters in wetlands have no through flow — as is often the case in many marshes in Mediterranean wetlands.Abbreviations used o-P = dissolved ortho phosphate (or its concentration) - Npart, Ppart = particulate N or P - Tot-Ninorg = Total inorganic nitrogen (= NH3 + NO2 + NO3)This paper, giving an overview of the research in the sediments of the Camargue, was read during the symposium Nutrient Cycles — A Joy Forever, on the occasion of my retirement, 19th of May 1993 at the I.H.E. in Delft (Netherlands).
Keywords:wetlands  phosphate cycle  nitrogen cycle  sediments  FeS  Camargue
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号