首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular characterization of the niaD and pyrG genes from Penicillium camemberti, and their use as transformation markers
Authors:Katherinne Navarrete  Amanda Roa  Inmaculada Vaca  Yeison Espinosa  Claudio Navarro  Renato Chávez
Affiliation:1. Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
2. Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, ?u?oa, Santiago, Chile
Abstract:Genetic manipulation of the filamentous fungus Penicillium camemberti has been limited by a lack of suitable genetics tools for this fungus. In particular, there is no available homologous transformation system. In this study, the nitrate reductase (niaD) and orotidine-5′-monophosphate decarboxylase (pyrG) genes from Penicillium camemberti were characterized, and their suitability as metabolic molecular markers for transformation was evaluated. The genes were amplified using PCR-related techniques, and sequenced. The niaD gene is flanked by the nitrite reductase (niiA) gene in a divergent arrangement, being part of the putative nitrate assimilation cluster in P. camemberti. pyrG presents several polymorphisms compared with a previously sequenced pyrG gene from another P. camemberti strain, but almost all are silent mutations. Southern blot assays indicate that one copy of each gene is present in P. camemberti. Northern blot assays showed that the pyrG gene is expressed in minimal and rich media, and the niaD gene is expressed in nitrate, but not in reduced nitrogen sources. The functionality of the two genes as transformation markers was established by transforming A. nidulans pyrG- and niaD-deficient strains. Higher transformation efficiencies were obtained with a pyrG-containing plasmid. This is the first study yielding a molecular and functional characterization of P. camemberti genes that would be useful as molecular markers for transformation, opening the way for the future development of a non-antibiotic genetic transformation system for this fungus.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号