The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth |
| |
Authors: | Peña María J Ryden Peter Madson Michael Smith Andrew C Carpita Nicholas C |
| |
Affiliation: | Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA. |
| |
Abstract: | In land plants, xyloglucans (XyGs) tether cellulose microfibrils into a strong but extensible cell wall. The MUR2 and MUR3 genes of Arabidopsis encode XyG-specific fucosyl and galactosyl transferases, respectively. Mutations of these genes give precisely altered XyG structures missing one or both of these subtending sugar residues. Tensile strength measurements of etiolated hypocotyls revealed that galactosylation rather than fucosylation of the side chains is essential for maintenance of wall strength. Symptomatic of this loss of tensile strength is an abnormal swelling of the cells at the base of fully grown hypocotyls as well as bulging and marked increase in the diameter of the epidermal and underlying cortical cells. The presence of subtending galactosyl residues markedly enhance the activities of XyG endotransglucosylases and the accessibility of XyG to their action, indicating a role for this enzyme activity in XyG cleavage and religation in the wall during growth for maintenance of tensile strength. Although a shortening of XyGs that normally accompanies cell elongation appears to be slightly reduced, galactosylation of the XyGs is not strictly required for cell elongation, for lengthening the polymers that occurs in the wall upon secretion, or for binding of the XyGs to cellulose. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|