首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo.
Authors:A Jaworski  N P Higgins  R D Wells  W Zacharias
Institution:Department of Biochemistry, School of Medicine, University of Alabama, Birmingham 35294.
Abstract:The influence of topoisomerase I and gyrase mutations in Escherichia coli on the supercoiled density of recombinant plasmids and the stability of left-handed Z-DNA was investigated. The formation of Z-DNA in vivo by dC-dG sequences of different lengths was used to determine the effective plasmid supercoil densities in the mutant strains. The presence of Z-DNA in the cells was detected by linking number and EcoRI methylase inhibition assays. A change in the unrestrained superhelical tension in vivo directly effects the B- to Z-DNA transition. Alterations in the internal or external environment of the cells, such as the inactivation of gyrase or topoisomerase I, a gyrase temperature-sensitive mutant, or starvation of cells, have a dramatic influence on the topology of plasmids. Also, E. coli has significantly more superhelical strain than Klebsiella, Morganella, or Enterobacter. These studies indicate that linking deficiency and effective supercoil density are mutually independent variables of plasmid tertiary structure. A variety of factors, such as protein-DNA interactions, activity of topoisomerases, and the resulting supercoil density, contribute to the B to Z transition inside living cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号