首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phytochromes A1 and B1 have distinct functions in the photoperiodic control of flowering in the obligate long-day plant Nicotiana sylvestris
Authors:Zheng Zhi-Liang  Yang Zhenbiao  Jang Jyan-Chyun  Metzger James D
Institution:Department of Horticulture and Crop Science, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA.
Abstract:The obligate long-day plant Nicotiana sylvestris with a nominal critical day length of 12 h was used to dissect the roles of two major phytochromes (phyA1 and phyB1) in the photoperiodic control of flowering using transgenic plants under-expressing PHYA1 (SUA2), over-expressing PHYB1 (SOB36), or cosuppressing the PHYB1 gene (SCB35). When tungsten filament lamps were used to extend an 8 h main photoperiod, SCB35 and SOB36 flowered earlier and later, respectively, than wild-type plants, while flowering was greatly delayed in SUA2. These results are consistent with those obtained with other long-day plants in that phyB has a negative role in the control of flowering, while phyA is required for sensing day-length extensions. However, evidence was obtained for a positive role for PHYB1 in the control of flowering. Firstly, transgenic plants under-expressing both PHYA1 and PHYB1 exhibited extreme insensitivity to day-length extensions. Secondly, flowering in SCB35 was completely repressed under 8 h extensions with far-red-deficient light from fluorescent lamps. This indicates that the dual requirement for both far-red and red for maximum floral induction is mediated by an interaction between phyA1 and phyB1. In addition, a diurnal periodicity to the sensitivity of both negative and positive light signals was observed. This is consistent with existing models in which photoperiodic time measurement is not based on the actual measurement of the duration of either the light or dark period, but rather the coincidence of endogenous rhythms of sensitivity - both positive and negative - and the presence of light cues.
Keywords:critical day length  floral induction  floral stimulus  photoperiodism
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号