首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ontogenesis of tonotopy in inferior colliculus of a hipposiderid bat reveals postnatal shift in frequency-place code
Authors:R Rübsamen  G Neuweiler  G Marimuthu
Institution:(1) Lehrstuhl für Allgemeine Zoologie und Neurobiologie, ND6, Ruhr-Universität Bochum, Postfach 102148, D-4630 Bochum, Federal Republic of Germany;(2) Zoologisches Institut der Universität München, Luisenstraße 14, D-8000 München 2, Federal Republic of Germany;(3) Department of Animal Behaviour, Madurai Kamaraj University, Madurai, India
Abstract:Summary The postnatal development of midbrain tonotopy was investigated in the inferior colliculus (IC) of the south Indian CF-FM batHipposideros speoris. The developmental progress of the three-dimensional frequency representation was determined by systematic stereotaxic recordings of multiunit clusters from the 1st up to the 7th postnatal week. Additional developmental measures included the tuning characteristics of single units (Figs. 3f; 4f; 5f), the analysis of the vocalised pulse repertoire (Figs. 3e, 4e, 5e), and morphometric reconstructions of the brains of all experimental animals (Fig. 1).The maturation of auditory processing could be divided into two distinct, possibly overlapping developmental periods: First, up to the 5th week, the orderly tonotopy in the IC developed, beginning with the low frequency representation and progressively adding the high frequency representation. With regard to the topology of isofrequency sheets within the IC, maturation progresses from dorsolateral to ventromedial (Figs. 3c, 4c). At the end of this phase the entire IC becomes specialised for narrowly tuned and sensitive frequency processing. This includes the establishment of the lsquoauditory fovearsquo, i.e. the extensive spatial representation of a narrow band of behaviorally relevant frequencies in the ventromedial part of the IC. In the 5th postnatal week the auditory fovea is concerned with frequencies from 100–118 kHz (Fig. 4c, d). During subsequent development, the frequency tuning of the auditory fovea increases by 20–25 kHz and finally attains the adult range of ca. 125–140 kHz. During this process, neither the bandwidth of the auditory fovea (15–20 kHz) nor the absolute sensitivity of its units (ca. 50 dB SPL) were changed. Further maturation occurred at the single unit level : the sharpness of frequency tuning increased from the 5th to the 7th postnatal weeks (Q-10-dB-values up to 30–60), and upper thresholds emerged (Figs. 4f, 5f).Although in the adult the frequency of the auditory fovea matches that of the vocalised pulses, none of the juvenile bats tested from the 5th to the 7th weeks showed such a frequency match between vocalisation and audition (Figs. 4e, 5e).The results show that postnatal maturation of audition in hipposiderid bats cannot be described by a model based on a single developmental parameter.Abbreviations BF best frequency - CF constant frequency - Cer cerebellum - CN cochlear nucleus - CO auditory cortex - CUF cuneiform nucleus - DAB days after birth - FAL forearm length - FM frequency modulation - IC inferior colliculus - NLL nucleus of the lateral lemniscus - PAG periaqueductal gray - SC superior colliculus
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号